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Abstract 

Recent research suggests the widespread existence of the signal-to-noise paradox in seasonal-to-decadal climate 

predictions. The essence of the paradox is that the signal-to-noise ratio in models can be unrealistically small and 

models may make better predictions of the observations than they predict themselves. The paradox highlights a 

potentially serious issue with model predictions as previous studies may underestimate the limit of predictability. The 

focus of this paper is two-fold: the first objective is to re-examine decadal predictability from the lens of the signal-

to-noise paradox in the context of CMIP5 models. We demonstrate that decadal predictability is generally 

underestimated in CMIP5 models possibly due to the existence of the signal-to-noise paradox. Models underestimate 

decadal predictability in regions where it is likely for the paradox to exist. The second objective follows from the 

results of the first, attempting to determine if this underestimate of decadal predictability is, at least partially, due to 

missing ocean mesoscale processes and features in CMIP5 models. A suite of coupled model experiments is performed 

with eddy-resolving and eddy-parameterized ocean component. Compared with eddy-parameterized models, the 

paradox is less likely to exist in eddy-resolving models, particularly over eddy-rich regions. These also happen to be 

regions where increased decadal predictability is identified. We hypothesize that this enhanced predictability is due to 

the enhanced vertical connectivity in the ocean. The presence of mesoscale ocean features and associated vertical 

connectivity significantly influence decadal variability, predictability, and the signal-to-noise paradox. 

Keywords: Signal-to-noise paradox; Decadal predictability; CMIP5; CCSM4; Eddy-resolving model; Vertical 

Connectivity 
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1 Introduction 

There is a continuously growing demand for decadal climate predictions. Making skillful decadal predictions 

has potential benefits in terms of supporting decision-making processes in agriculture, energy and water management 

among other sectors (e.g., Kirtman et al. 2013; Kushnir et al. 2019; Merryfield et al. 2020). While seasonal climate 

prediction has matured into regular operational forecasts (e.g., Kirtman et al. 2014), forecasting the climate over 

decades has proven more challenging (Keenlyside et al. 2008; Meehl et al. 2014; Zhang and Kirtman 2019a). 

One of the significant challenges in decadal prediction and often overlooked in previous studies is the so-

called “signal-to-noise paradox” (e.g., Scaife et al. 2014; Siegert et al. 2016; Smith et al. 2019; Zhang and Kirtman 

2019b). The essence of the paradox is that the signal-to-noise ratio estimated in climate models can be too small. 

Specifically, models seem to be better at predicting observations than predicting themselves as the model ensemble 

mean forecasts are better correlated with observations than with individual ensemble members. Scaife et al. (2014) 

first discussed the signal-to-noise paradox in seasonal prediction of the winter North Atlantic Oscillation (NAO) index, 

and subsequently, a growing list of examples in different atmospheric and climate models has emerged (Scaife and 

Smith 2018). For example, Zhang and Kirtman (2019b, hereafter ZK19) developed a simple Markov model framework 

and provided a comprehensive assessment of the NAO index indicating the widespread existence of the signal-to-

noise paradox in coupled models from the fifth Coupled Model Intercomparison Project (CMIP5). The Markov model 

framework can easily reproduce the signal-to-noise paradox, which is dependent on the magnitude of the persistence 

and noise variance. Smith et al. (2019) used multi-model decadal hindcasts from seven state-of-the-art coupled climate 

models with a total of 71 ensemble members suggesting the existence of the signal-to-noise paradox in decadal 

predictions. One of the key points highlighted in the Smith et al. (2019) paper was that model-based estimates of 

decadal predictability might actually be an underestimate, as previous studies could have mispresented the noise, or 

underestimated the magnitude of the predictable signal due to limited ensemble size. 

The specific examples of the paradox and the associated model errors noted above suggest that model based 

estimates of climate predictability may seriously underestimate the limit of predictability. As we begin to understand 

the mechanisms for the paradox, predictability estimates also need to be revisited. Where and to what extent is the 

paradox leading to substantial underestimates of the limit of predictability? The first goal of the paper is to re-examine 

decadal predictability from the lens of the signal-to-noise paradox in the context of the CMIP5 models. 
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The second goal of the paper follows from the results of the first. Essentially, the results from the first goal 

show that the CMIP5 models seriously underestimate the limit of decadal predictability, and we hypothesize in this 

second goal that this underestimate is, at least in part, due to missing ocean mesoscale processes and features in the 

CMIP5 models. Again, the results are presented in the context of the signal-to-noise paradox. 

With the above in mind, there have been several studies examining the mechanisms for the paradox. For 

example, the signal-to-noise paradox has been attributed to a lack of persistence (Strommen and Palmer 2019; Zhang 

and Kirtman 2019b), weak extratropical air-sea coupling (Scaife and Smith 2018), stratospheric initialization (O'Reilly 

et al. 2019), and underestimated eddy feedbacks due to low atmospheric model resolution (Scaife et al. 2019). Little 

to no research, however, has asked how mesoscale ocean features affect the signal-to-noise paradox and associated 

estimate of decadal predictability. The role of ocean mesoscale processes is of particular interest since several previous 

studies have suggested that decadal SST variability in coupled models is improved when ocean mesoscale features 

and processes are resolved (e.g., He et al. 2018; Infanti and Kirtman 2019; Kim et al. 2018; Samanta et al. 2018; 

Kirtman et al. 2012, 2017; Siqueira and Kirtman 2016; Zhang and Kirtman 2019a; among others). As shown by 

Kirtman et al. (2017), for example, the resolved mesoscale ocean features can substantially influence large-scale 

climate variability, air-sea interactions, and predictability. Particularly in the North Atlantic region, a more realistic 

mean-state climate and improved representation of ocean-atmosphere coupling and decadal SST variability around 

the Gulf Stream region have been detected with eddy-resolving GCMs (Siqueira and Kirtman 2016). Given the 

importance of eddies on low-frequency variability and ocean-atmosphere coupling, the lack of ocean eddy resolution 

in current coupled models (e.g., eddy-parameterized models used in CMIP5) can potentially affect the estimates of 

decadal climate predictability. 

In addition to the overall representation of decadal variability, the second goal of this study is motivated by 

the hypothesis that low-resolution eddy-parameterized GCMs may misrepresent or even lack the vertical 

communication in the subsurface to the deeper ocean, contributing to a lack of persistence in models and thus the 

signal-to-noise paradox. The underestimated vertical communication between the deep ocean and surface processes 

in CMIP5 models compared to observations has been recently explored by Kravtsov (2020). Kravtsov (2020) 

introduced an updated linear energy-balance model considering the heat exchange between ocean mixed layer and 

thermocline in the Atlantic and Pacific oceans. By fitting the observed and CMIP5 model-simulated SST with the 

energy-balance model, Kravtsov (2020) identified stronger vertical communication between the deep ocean and 
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surface processes in observations than CMIP5 models, contributing to a larger fraction of predictable variability at 

decadal timescales. This significant difference in decadal potential predictability between observations and CMIP5 

models, as suggested by Kravtsov (2020), may lead to the signal-to-noise paradox. We note that the time-scales 

associated with the vertical connectivity arguments presented here are considerably shorter that the time-scales 

addressed in Clement et al. (2015) who question the role of sub-surface ocean dynamics in the Atlantic multi-decadal 

variability based on coarse resolution CMIP3 and CMIP5 models. 

In this study, we first examine the decadal potential predictability in observations and CMIP5 models from 

a diagnostic perspective, i.e., the first goal. Again, through the lens of the signal-to-noise paradox we use the Markov 

model framework developed in ZK19 to diagnose predictability. In terms of the second goal, distinct from Kravtsov 

(2020) who estimated the coupling parameters between thermocline and mixed layer in the energy-balance model, we 

perform a suite of model experiments with and without resolved ocean mesoscale features, again through the lens of 

the paradox. We argue that high-resolution models with resolved ocean mesoscale features have stronger vertical 

connectivity in the subsurface to the deeper ocean than low-resolution models, which may potentially, or at least 

partially eliminate the signal-to-noise issue and thus improve decadal predictability over decadal timescales.  

2 Data and Method 

2.1 Observations and CMIP5 models 

Three observational monthly sea surface temperature (SST) datasets are used in this study; namely, the 

National Oceanic and Atmospheric Administration (NOAA) Extended Reconstructed SST version‐5 (ERSST; Huang 

et al. 2017) on 2°×2° grids for 1854-present, the Hadley Center Global Sea Ice and SST data set (HadISST; Rayner 

et al. 2003) from 1870 to 2017 with a spatial resolution of 1°×1°, and the Centennial Observation‐Based Estimates of 

SST version‐2 (COBE; Hirahara et al. 2014) from 1850 to 2017 on the same grid as HadISST data. Monthly mean sea 

level pressure (SLP) data is obtained from three resources, including two 20th century reanalysis datasets from the 

NOAA (20CR; 2°×2°; 1871-2012; Compo et al. 2011) and the European Centre for Medium‐Range Weather Forecasts 

(ERA20C; 1°×1°; 1900-2010; Poli et al. 2016), as well as the Hadley Centre's Mean SLP data (HadSLP; 5°×5°; 1850-

2004; Allan and Ansell 2006). 

Both the historical (HIST, first realization) and the preindustrial control (PI) simulations of thirty CMIP5 

models are used in this study to compare with observations (Table 1). We only use the first realization (r1i1p1) of 
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Atmospheric PI Length Models Data/Modeling Institute Resolution (years) 
1 ACCESS1‐0 500 Commonwealth Scientific and Industrial Research 145 × 192 2 ACCESS1‐3 500 Organization and Bureau of Meteorology (Australia) 
3 BCC‐CSM1‐1 64 × 128 500 China Meteorological Administration 4 BCC‐CSM1‐1‐m 160 × 320 400 
5 BNU‐ESM 64 × 128 559 Beijing Normal University 
6 CanESM2 64 × 128 996 Canadian Centre for Climate Modeling and Analysis 
7 CCSM4 192 × 288 1051 National Center for Atmospheric Research 
8 CESM1‐BGC 500 
9 CESM1‐CAM5 192 × 288 319 National Science Foundation and Department of Energy 
10 CESM1‐FASTCHEM 222 
11 CMCC‐CM 240 × 480 330 Centro Euro‐Mediterraneo per I Cambiamenti Climatici 12 CMCC‐CMS 96 × 192 500 

Centre National de Recherches Meteorologiques and 
13 CNRM‐CM5 128 × 256 850 Centre Europeen de Recherche et Formation Avancees 

en Calcul Scientifique 
Australian Commonwealth Scientific and Industrial 

14 CSIRO‐Mk3‐6‐0 96 × 192 500 Research Organization and Queensland Climate Change 
Centre of Excellence 

15 GFDL‐CM3 500 
16 GFDL‐ESM2G 90 × 144 500 Geophysical Fluid Dynamics Laboratory 
17 GFDL‐ESM2M 500 
18 GISS‐E2‐H‐CC 25190 × 144 Goddard Institute for Space Studies 19 GISS‐E2‐R‐CC 251 
20 HadGEM2‐CC 240145 × 192 Met Office Hadley Centre 21 HadGEM2‐ES 576 
22 inmcm4 120 × 180 500 Institute for Numerical Mathematics 
23 IPSL‐CM5A‐LR 96 × 96 1000 
24 IPSL‐CM5A‐MR 143 × 144 300 Institut Pierre‐Simon Laplace 
25 IPSL‐CM5B‐LR 96 × 96 300 
26 MPI‐ESM‐LR 1000 
27 MPI‐ESM‐MR 96 × 192 1000 Max Planck Institute for Meteorology 
28 MPI‐ESM‐P 1156 
29 NorESM1‐ME 25296 × 144 Norwegian Climate Centre 30 NorESM1‐M 501 

  

                    

               

  

  

137 each CMIP5 model to equally weight each model in the multi-model mean estimates. The HIST simulations are 

138 simulations of recent past climate (1850-2005) forced by changing conditions, while the PI simulations are 

139 preindustrial coupled ocean-atmosphere control simulations with non-evolving preindustrial conditions (Taylor et al. 

140 2012). Variability in the PI simulations is generated only through interactions internal to the coupled system, while 

141 variability in the HIST simulations is also due to natural and anthropogenic forcing (Murphy et al. 2017). 

142 

143 Table 1. CMIP5 models used in this study. PI accounts for the preindustrial control simulations. We also use all the 

144 historical simulations of CMIP5 models from 1870 to 2005. The CMIP5 model outputs and associated descriptions 

145 can be found in the CMIP5 archive (http://cmip-pcmdi.llnl.gov/cmip5). 

146 
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147 2.2 CCSM4 model experiments 

148 A suite of model experiments is performed with the National Center for Atmospheric Research Community 

149 Climate System Model Version 4 (CCSM4; see overview in Gent et al. 2011). In the low-resolution eddy-

150 parameterized experiment (hereafter referred to as LR), we use 1° atmosphere (CAM4) and land (CLM3.5) models 

151 coupled to the ocean (POP2) and sea-ice (CICE4) models with 1° resolution; all the component models are linked and 

152 coordinated through the CCSM flux coupler. We conduct the LR CCSM4 experiment with present-day forcing (e.g., 

153 greenhouse gas concentrations from 1990) for 500 years, and the first 200 years are viewed as a spin-up period. 

154 Different from the LR experiment, we employ a 0.5° atmospheric model coupled to 0.1° ocean and sea ice component 

155 models (Kirtman et al. 2012) in the high-resolution eddy-resolving experiment (hereafter referred as HR). We first 

156 perform a 155-year standard control simulation with the same greenhouse gas concentrations as in the LR experiment, 

157 and the first 100 years of the simulation are taken as spin-up and are discarded in the analysis. Restarting from the 

158 first experiment with small perturbations, we run two other experiments for 70 years, each with the first 20 years taken 

159 as spin-up periods. In total, we analyze here 155 years of HR simulations and 300 years of LR simulations. 

160 

161 2.3 Markov model framework 

162 The Markov model framework is extensively described in ZK19 and has proven useful to determine the 

163 existence of the signal-to-noise paradox. The design of the Markov model framework starts from a linear signal-plus-

164 noise model assuming that the future state forecasts depend linearly on the current state predictor and a stochastic 

165 noise term. The observations and models can be simulated with a statistical Markov chain model: 

�#$% = ��# + � (1) 

#$%�+ = ��# + �+ (2) 

(3) �
#$% 

= ��# + � 

166 where {O} is the observation, and {M} is the model forecasts initialized with observations and perturbed with different 

167 noise realizations {�+} (i = 1, 2, 3, …). � and � are estimated as the lag-1 autocorrelation coefficients implying the 

168 persistence of the system. N and P are simply modeled as white-noise processes (see also Kirtman et al. 2005). {�} 

169 and {�} are model ensemble mean forecasts and ensemble mean noise. Following the procedure in ZK19, we can 

170 analytically derive the correlation between the model ensemble mean forecasts and observations (corr(�, O)) and the 
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171 correlation between the model ensemble mean forecasts and individual ensemble members (corr(�, �+)), and thus 

172 the ratio of squared correlation (RSC): 

5����56�, �8 �5�5�:5 + �5(1 − �5)�?��� = 5����56�, �+8 
= 

�5�: 
(4) 

173 where �: 
5 and �?5 are noise variance for the observation and model ensemble members, which can be estimated as the 

174 total variance in observations and model forecasts multiplied by a factor of 1 − �5 and 1 − �5, respectively. Based 

175 on Scaife and Smith (2018), there can be a signal-to-noise paradox when the RSC is greater than 1.0. So (4) becomes, 

�5 �5 

5 > 5�: �?
(5) 

176 Distinct from ZK19, who applied the Markov model framework to the monthly NAO index, this study further 

177 examines the signal-to-noise paradox, especially in SST fields based on CMIP5 HIST and PI simulations with a focus 

178 on decadal timescales. 

179 

180 3 Results and Discussion 

181 3.1 Underestimated decadal climate predictability in CMIP5 models 

182 Decadal climate predictability is quantified using the potential predictability variance ratio (Boer 2004; 

183 Zhang et al. 2017), which indicates the relative intensity of decadal variability and provides an efficient approach to 

184 estimate decadal predictability from a diagnostic perspective. As suggested by Boer (2004), the total climate variability 

185 5(�ABC) can be decomposed into a low-frequency component (�DE5 ) that may be potentially predictable and a high-

186 5frequency unpredictable noise component (�FGG ). This approach assumes that the slower potentially predictable 

187 5 5 5component is independent from the noise term (�DE = �ABC − �FGG). Therefore, decadal potential predictability can 

188 5be defined as the ratio of decadal-scale variability with respect to the total variability (�DE5 /�ABC × 100%). In this 

189 study, we extract decadal-scale climate variability by applying a 5-year low-pass Butterworth filter, after subtracting 

190 the annual cycle and linearly detrending the monthly time series from each observation and model simulation. The 

191 observational mean (based on ERSSTv5, COBE-SST2, and HadISST) and multi-model mean estimates (based on 

192 thirty CMIP5 model HIST simulations) of decadal SST predictability are shown in Figs. 1a and 1b. Note that SST in 

193 model simulations is obtained by masking all the non-ocean regions of surface temperature, and for each observation 

194 and model simulation, SST is bilinearly interpolated to 2°×2° grids before analysis. In observations, considerable 
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ocean regions display relatively higher values of decadal SST predictability such as the North Atlantic, Western Pacific, 

Tropical Indian Ocean, and Southern Ocean, which is generally consistent with several earlier studies (e.g., Ding et 

al. 2016; Zhang and Kirtman 2019a). Meanwhile, relatively lower decadal SST predictability is detected over the 

Eastern Tropical Pacific, with values ranging from 25% to 60% gradually increasing westward, implying that decadal 

climate in this region may be still potentially predictable to some extent, though the Eastern Tropical Pacific is 

dominated by the El Niño–Southern Oscillation (ENSO) at interannual timescales. Uncertainty remains in the long-

term predictability over the Eastern Tropical Pacific region (e.g., Gonzalez and Goddard 2016. Kirtman and Schopf 

1998; Kravtsov 2012; Newman 2007), and as suggested by Wittenberg et al. (2014), for example, the ENSO potential 

predictability is lost after the 3-4 year range in the absence of external forcing. 

Compared with observational estimates, we find much lower values of decadal SST predictability for the 

CMIP5 multi-model mean estimates, except some regions such as the Northeastern Pacific and subpolar North Atlantic 

(Fig. 1b). High decadal SST predictability in the subpolar North Atlantic is identified, and consistent with the results 

based on observations, where decadal SST variability is significantly impacted by internal atmospheric noise and 

subsurface ocean dynamics (Zhang and Kirtman 2019a). Fig. 1c shows the difference between the observational and 

CMIP5 multi-model estimates in six different ocean regions, namely, the North Atlantic (NA; 20-65°N, 80-0°W), 

North Pacific (NP; 20-60°N, 120°E-120°W), Eastern Tropical Pacific (ETP; 10°S-10°N, 180-85°W), Tropical 

Atlantic (TA; 15°S-15°N, 80-0°W), Tropical Indian (TI; 15°S-25°N, 40-100°E), and Southern Ocean (SO; 65-40°S, 

0-360°E). The observational estimates show higher decadal SST predictability than most of the CMIP5 models except 

in the North Pacific; that is, decadal SST predictability is generally underestimated in CMIP5 models. The spatial 

distribution of decadal SST predictability based on CMIP5 models in the North Pacific is substantially different from 

those based on observational estimates, with larger values concentrated in the subpolar gyre, despite that the mean 

estimates in models and observations are somewhat comparable. Notably, there is significant inconsistency among 

different observational estimates, especially in the Tropical Atlantic and the Southern Ocean; also, thirty CMIP5 

models used here show better agreement in the North Atlantic and North Pacific than other regions. 

The impact of linear detrending is assessed in Fig. 2, which shows decadal SST predictability without 

detrending and with the regression-detrending method following Ting et al. (2009) by regressing out the global mean 

SST warming trend. Similar spatial patterns of decadal SST predictability is found with the different detrending 

methods and even without detrending, supporting our argument of the underestimated decadal SST predictability in 
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223 CMIP5 models. 

224 Fig. 3 is the same as Fig. 1 but for decadal SLP predictability. The observations (ERA20C, 20CR, and 

225 HadSLP) present higher values of decadal SLP predictability than almost all the CMIP5 models, indicating that CMIP5 

226 models also underestimate the observed decadal SLP predictability. The underestimated decadal predictability in 

227 models is not merely due to the underestimate of decadal-scale SST and SLP variance in CMIP5 models. For example, 

228 the variance can be comparable or even higher than the observed variance estimate in substantial regions (Fig. 4). The 

229 results shown here suggest that the CMIP5 models largely underestimate the decadal predictability, but not necessarily 

230 the decadal variance. 

231 Wang et al. (2015) diagnose the leading EOF modes of SST on monthly and decadal timescales and argue 

232 that compared with observational estimates, both CMIP3 and CMIP5 models fail to capture the accurate spatial 

233 structure of SST variability. The striking disagreement in observational estimates and CMIP5 models may stem from 

234 the ocean-atmosphere coupling (Li et al. 2013; Sun et al. 2015), ocean dynamics (Kirtman et al. 2012), and intrinsic 

235 model errors (Gupta et al. 2013; Richter 2015), which requires further investigation.  

236 

237 

238 Fig. 1. Decadal SST predictability based on observations and CMIP5 models. (a) Observational mean estimates based 

239 on three observational SST datasets. We calculate decadal SST predictability for each observational dataset and then 

10 



  

               

             

         

          

      

          

          

             

  

  

               

         

          

             

   

  

240 take the average as the observational mean estimates. (b) Multi-model mean estimates based on 30 CMIP5 historical 

241 simulations. (c) Difference of observational and multi-model mean estimates in six different ocean regions, namely, 

242 the North Atlantic (NA; 20-65°N, 80-0°W), North Pacific (NP; 20-60°N, 120°E-120°W), Eastern Tropical Pacific 

243 (ETP; 10°S-10°N, 180-85°W), Tropical Atlantic (TA; 15°S-15°N, 80-0°W), Tropical Indian (TI; 15°S-25°N, 40-

244 100°E), and Southern Ocean (SO; 65-40°S, 0-360°E). 

245 HadISST = Hadley Centre Sea Ice and Sea Surface Temperature. ERSST = Extended Reconstructed Sea Surface 

246 Temperature. COBE-SST = Centennial in situ Observation-Based Estimates. OBSM = observational mean estimates. 

247 CMIP5 = Coupled Model Intercomparison Project 5. MMM = Multi-model Mean estimates. 

248 

249 

250 Fig. 2. Impact of linear detrending on decadal SST predictability. (a) Observational mean estimates of decadal SST 

251 predictability without any detrending. (b) Observational mean estimates of decadal SST predictability using the 

252 regression-detrending method (regressing out the global mean warming trend). (c) Multi-model mean estimates of 

253 decadal SST predictability without any detrending. (d) Multi-model mean estimates of decadal SST predictability 

254 using the regression-detrending method. 

255 
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256 

257 Fig. 3. Same as Fig. 1 but for decadal SLP predictability. (a) Observational mean estimates based on three 

258 observational SLP datasets. (b) Multi-model mean estimates based on 30 CMIP5 historical simulations. (c) Difference 

259 of observational and multi-model mean estimates in six different ocean regions. 

260 20CR = NOAA-CIRES-DOE Twentieth Century Reanalysis. ERA-20C = ECMWF's Atmospheric Reanalysis of the 

261 Twentieth Century. HadSLP = Hadley Centre's Mean Sea Level Pressure. 

262 

263 

264 Figure 4. Variance ratio between observations and CMIP5 models for (a) decadal SST variability and (b) decadal SLP 

265 variability. SST in models is obtained by masking all the non-ocean regions of surface temperature. Low ratio of 

266 decadal SST variance between models and observations in polar regions is significantly affected by sea ice temperature. 

12 



  

        

             

              

        

         

                

            

         

            

            

          

          

           

            

       

             

            

         

           

             

             

            

       

                

     

              

       

         

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

3.2 Signal-to-noise paradox in decadal climate predictability 

Recent research reveals the widespread existence of the signal-to-noise paradox in climate models. Here we 

ask is the underestimated decadal predictability in CMIP5 models related to the signal-to-noise paradox? Fig. 5 

encapsulates the relationship between the paradox and predictability. First, Fig. 5a shows the difference in decadal 

SST predictability between observations and CMIP5 HIST simulations, which is indicative of the underestimation in 

CMIP5 models. Based on the Markov model framework (see methods in Section 2c), the chance of existence for the 

signal-to-noise paradox based on thirty CMIP5 HIST simulations is examined in the low-pass filtered SST field (Fig. 

5b). Each SST observation and model simulation is detrended and normalized before analysis. The assessed likelihood 

of the existence of the paradox is designed following the Fifth Assessment Report of the United Nations 

Intergovernmental Panel on Climate Change (IPCC 2014): very likely 90-100%, likely 66-90%, about as likely as not 

33-66%, and very unlikely 0-33%. The patterns in the possibility of the existence of the signal-to-noise paradox (Fig. 

5b) is somewhat consistent with those in Fig. 5a, implying a possible relationship between the underestimated decadal 

SST predictability and the signal-to-noise paradox. Models are likely to underestimate decadal predictability in regions 

where it is likely to have a signal-to-noise paradox, especially around the Tropical Atlantic and the Tropical Indian 

Ocean and eddy-rich regions, including the Gulf Stream, the Kuroshio Current, and the Southern Ocean. 

This relationship between the paradox and predictability is further supported by the ratio of squared 

correlation over six ocean areas (same as Fig. 1c) estimated for each model in CMIP5 (Fig. 6). The regional mean 

SST index for each ocean region is created and then assessed with the ratio of squared correlation for each model. 

There would be a signal-to-noise paradox when the ratio of squared correlation is higher than 1.0, as suggested by 

Zhang and Kirtman (2019b). Here we show that the signal-to-noise paradox is very likely to occur in extratropical 

regions (e.g., the North Atlantic), the Tropical Atlantic and the Southern Ocean; meanwhile, only about half of the 

CMIP5 models used in this study indicate a paradox in the North and Eastern Tropical Pacific. 

The distributions for the chance of occurrence of the signal-to-noise paradox in this study show some 

consistency with several previous studies (Eade et al. 2014; Smith et al. 2019); for instance, Eade et al. (2014) show 

the distribution of the signal-to-noise paradox in surface air temperature by the ratio of predictable component based 

on a multi-model ensemble of decadal hindcasts from the Met Office decadal prediction system (DePreSys; Knight et 

al. 2014) and four CMIP5 models. 

The impact of external forcing on decadal SST predictability and the signal-to-noise paradox is also examined 
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here (Figs. 5c and 5d). Fig. 5c displays the difference of decadal SST variability between thirty CMIP5 HIST and PI 

simulations, with the latter having constant external forcing. The most noticeable difference between CMIP5 HIST 

and PI simulations appears in the tropics such as the Tropical Atlantic and the Tropical Indian ocean as longer decadal 

SST predictability is found in these regions, accompanied by a higher chance of the signal-to-noise paradox. 

Consistent with previous studies (e.g., Goddard et al. 2013; Guemas et al. 2013; Meehl et al. 2014), the Tropical Indian 

ocean stands out as the area significantly affected by the externally forced variability, which is shown to be much 

larger than the internally generated variability in both uninitialized simulations and initialized decadal hindcasts. It is 

worth mentioning that decadal SST predictability in CMIP5 models is smaller than the observational estimates, even 

in HIST simulations with evolving external forcing. We argue that CMIP5 models may underestimate the externally 

forced trend in the Tropical Indian ocean, though we cannot exclude the role of internal dynamics and any other 

associated factors in decadal predictability. 

The Tropical Atlantic is another region of emerging interest in near-term climate predictability, where 

external forcing acts as an important factor driving decadal variability (Yeager and Robson 2017). The Tropical 

Atlantic has long been considered as a region with significant SST bias and poor upper ocean thermal structure and 

limited decadal predictability (Harlaß et al. 2018; Patricola et al. 2012; Xu et al. 2014). Shaffry et al. (2017) utilized 

a high-resolution eddy-permitting coupled GCM (ocean model resolution 1/3°×1/3°) and showed improved decadal 

prediction skills compared with low-resolution models, especially over the Tropical Atlantic region, pointing toward 

the importance of model resolution. 

Furthermore, the coexistence of the underestimated decadal SST predictability and the high chance of 

occurrence for the signal-to-noise paradox in eddy-rich regions is suggestive of the lack of ocean model resolution in 

CMIP5 models. This is possible because all the coupled models in CMIP5 use eddy parameterized ocean models that 

may have weak vertical connectivity between ocean mixed layer and thermocline (Kravtsov 2020). The role of 

mesoscale ocean eddies and fronts, particularly in the western boundary regions has been highlighted in previous work 

(Bryan et al. 2010; Kirtman et al. 2012; Minobe et al. 2008; Siqueira and Kirtman 2016), and is a potential source of 

decadal predictability that has not been fully accounted for or leveraged. 
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Fig. 5. Existence of the signal-to-noise paradox in CMIP5 models and the impact of external forcing. (a) Difference 

of decadal SST predictability between observations and CMIP5 historical simulations. (b) Chance of existence for the 

signal-to-noise paradox based on 30 CMIP5 historical simulations. Each SST simulation is detrended and normalized 

before analysis. The existence of the signal-to-noise paradox is estimated based on the Markov model framework. (c) 

Difference of decadal SST predictability between CMIP5 historical and pre-industrial control simulations, suggesting 

the impact of external forcing. (d) Chance of existence for the signal-to-noise paradox based on 30 CMIP5 pre-

industrial control simulations. 
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Fig. 6. Ratio of squared correlation estimated based on the Markov model framework for 30 CMIP5 models (historical 

simulations) in six different ocean regions, including (a) NA: North Atlantic, (b) NP: North Pacific, (c) ETP: Eastern 

Tropical Pacific, (d) TA: Tropical Atlantic, (e) TI: Tropical Indian, and (f) SO: Southern Ocean. 

3.3 Advancing decadal predictability from an eddy-resolving GCM 

The following is based on the hypothesis that the presence of ocean mesoscale processes and features and 

the associated vertical connectivity affects decadal variability, predictability, and the signal-to-noise paradox. 

Specifically, coupled models with eddy-resolving component may, at least partially, reduce the signal-to-noise issue 

and thus improve decadal-scale climate predictability. The enhanced predictability we argue, is in part, due to the 

enhanced vertical connectivity in the ocean. This enhanced vertical connectivity allows the deeper ocean to more 

efficiently communicate with the surface, which, given the slower sub-surface time-scales, leads to longer surface 

predictability. To test this argument, we perform a suite of model experiments using CCSM4 with HR (eddy-resolved; 

0.1°×0.1°) and LR (eddy-parameterized; 1°×1°) ocean component models. The details of the CCSM4 model setup 

and experiment design have been provided in Section 2b, which are generally consistent with Kirtman et al. (2017), 

but here we employ a much longer LR simulations. 
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Fig. 7 encapsulates how resolved ocean eddies affect decadal predictability estimates. In particular, Figs. 7a 

and 7b show the global distributions of decadal SST potential predictability based on CCSM4 HR and the difference 

of decadal SST predictability between HR and LR simulations, respectively. In the HR simulations, we find relatively 

higher decadal SST predictability in eddy-rich regions such as the Gulf Stream and Kuroshio Current systems, Tropical 

Atlantic, and Southern Ocean, where decadal SST variability is also increased (Fig. 7c). Perhaps surprising is that we 

also detect higher decadal SST predictability in HR over the Tropical Indian and the Tropical Atlantic regions, 

suggesting the strong influence of mesoscale ocean features on decadal SST predictability in addition to the impact of 

external forcing (e.g., Guemas et al. 2013; Meehl et al. 2014). We also note that decadal SST variability is remarkably 

elevated with HR simulations over western and eastern boundary current regions in the extratropics (Fig. 7c). 

In the subpolar North Atlantic, both the LR and HR simulations show relatively longer decadal SST 

predictability (Fig. 7a), which is closely related with the persistence of low-frequency ocean heat content (OHC) 

variability (Buckley et al. 2019; Foukal and Lozier 2018; Robson et al. 2012; Yeager and Robson 2017), as an 

important part of the Atlantic Meridional Overturning Circulation (AMOC; Klavans et al. 2019; Latif et al. 2006; Yan 

et al. 2018; Zhang 2017; Zhang and Zhang, 2015). The inclusion of mesoscale ocean features in HR results in greater 

decadal variability in the North Atlantic SST, but without a substantial increase in decadal predictability, except in the 

Gulf Stream and its extension. Slightly decreased decadal SST predictability in the North Atlantic Subpolar Gyre in 

HR is in better agreement with observational estimates. We speculate that this is largely due to substantial different 

mean states between HR and LR (Fig. 8). Except for the Eastern Tropical Pacific, regions with increased decadal SST 

predictability based on HR compared with LR are in good agreement with regions with longer persistence of decadal-

scale SST variability (Fig. 7d), suggesting that the paradox is less likely to occur in the HR model, based on the 

Markov model framework (see Eq. 5 in Section 2c). 
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Fig. 7. Decadal SST predictability using CCSM4 models and the effect of ocean model resolutions. (a) Decadal SST 

predictability based on HR eddy-resolving CCSM4. Ratio of HR and LR CCSM4 in terms of (b) decadal SST 

predictability, (c) decadal SST variability, and (d) the persistence of decadal SST variability. The persistence of the 

system is estimated as the lag-1 year autocorrelation of 5-year low-pass filtered SST data. 
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Figure 8. Annual mean SST bias in (a) 30 CMIP5 models and (b) CCSM4 based on HIST simulations. (c) Difference 

of annual mean SST in HR and LR CCSM4 simulations. The unit is °C. 

As noted early, we hypothesize on these decadal time-scales (5-10 years) the enhanced vertical connectivity 

in the HR simulation compared to the LR simulation is a possible explanation for the longer limits of predictability 

(Buckley et al. 2019). We demonstrate this point by taking a close look at the vertical structure over the Gulf Stream 

and eastern Tropical Atlantic regions where large differences in decadal SST predictability are situated (Fig. 7b). For 

shallow depth integrals of 100m and 200m, both LR and HR models show OHC anomalies highly correlated with the 

SSTA, especially in the Gulf Stream (Figs. 9a and 9b). However, for deeper depth integrals, such as to 400m and 
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382 700m, the OHC anomalies get progressively less correlated with the SSTA in the LR model, especially in the eastern 

383 Tropical Atlantic, indicating evident differences with HR, which maintain a consistent vertical structure. 

384 

385 

386 Fig. 9. Lagged cross-correlation between SSTA and OHC anomalies for depths of integration to 100, 200, 400 and 

387 700 m in the Gulf Stream (32°N-45°N; 80°W-45°W) region for (a) HR and (b) LR; (bottom) in Eastern Tropical 

388 Atlantic (20°S-10°N; 15°W-15°E) for (c) HR and (d) LR. Negative (positive) years indicate the SSTa leading (lagging) 

389 the OHC anomalies for lags between -2 and 2 years. All variables are 5-year low-pass filtered. The one-tailed (95%) 

390 significance threshold for the cross-correlation is depicted by the hatched area and estimated using the non-parametric 

391 random phase method (Ebisuzaki 1997). 
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Fig. 10. Vertical correlation between SSTA and subsurface ocean temperature anomalies averaged over (a, b) the 

upper 200-500 m and (c, d) the upper 700-1000 m. (a) and (c) are estimated based on HR, while (b) and (d) are 

estimated based on LR. All the data are 5-year low-pass filtered. 

To underscore the results in Fig. 9, i.e., the enhanced vertical connectivity associated with resolved ocean 

meso-scale features and processes we show the vertical correlation between SSTA and subsurface ocean temperature 

anomalies (Fig. 10) and the instantaneous correlation between the 400m OHC anomalies and surface heat flux 

anomalies (Fig. 11). Fig. 10 shows the vertical correlation between SSTA and thermocline ocean temperature averaged 

over 200-500 m (upper thermocline; Figs. 10a and 10b) and 700-1000 m (deeper thermocline; Figs. 10c and 10d). 

We note that there is strong vertical connection between SST and upper thermocline in both HR (Fig. 10a) and LR 

(Fig. 10b). The most significant difference between HR and LR occurs in the deeper thermocline. Much stronger 

vertical connectivity is seen over eddy-rich regions in HR (Fig. 10c) compared with LR (Fig. 10d). Fig. 11 shows the 

correlation between the surface net heat flux anomalies and OHC anomalies for HR (Fig. 11a) and for LR (Fig. 11b). 

The results are generally consistent with Buckley et al. (2019). The correlations in frontal ocean zones and eddy rich 

regions in HR (Fig. 11a) are stronger in HR than LR (Fig. 11b). Further, in LR there is widespread regions of negative 
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(a) (b) 

 

408 correlations where in the Gulf Stream and Kuroshio subtropical recirculation gyres, subtropical North and South 

409 Pacific and Southern Ocean (Fig. 11b). This reversal is difficult to detect or appears only in isolated regions of HR, 

410 notably in the Pacific warm pool and the sub-Antarctic zone of deep mixed layers. 

411 

412 Fig. 11. Correlation between 5yr low-pass filtered anomalies of 0-400m ocean heat content and net heat flux for (a) 

413 HR and (b) LR. The sign convention is positive heat flux warms the atmosphere. 

414  

415 4 Summary  

416  To understand the underlying mechanisms for the signal-to-noise paradox, we focus on two main questions: 

417 (i) where and to what extent is the paradox leading to substantial underestimates of the limit of predictability? (ii) Is 

418 this underestimate of predictability and associated signal-to-noise paradox related with the representation of ocean 

419 mesoscale processes and features? To address the first question, we re-examine decadal predictability in CMIP5 

420 models from the perspective of the signal-to-noise paradox. We first compare decadal predictability of SST and SLP 

421 in observations and CMIP5 models, showing that decadal predictability estimates based on models are generally 

422 underestimated, particularly in the Tropical Atlantic, Tropical Indian ocean, and many eddy-rich regions. The 

423 distribution of the signal-to-noise paradox in the SST fields of CMIP5 models is presented following the Markov 

424 model framework in Zhang and Kirtman (2019b). The difference between observed and model-simulated decadal 

425 predictability is closely associated with the signal-to-noise paradox in that models are likely to underestimate decadal 

426 predictability in regions where it is likely to have the signal-to-noise paradox. We also examined this question in the 

427 context of so-called historical climate simulations as well as pre-industrial control runs. For example, the Tropical 

428 Indian and Tropical Atlantic oceans are two typical regions significantly influenced by external forcing, where we 

429 detect lower chance of existence for the signal-to-noise paradox in CMIP5 HIST simulations compared with PI 

 22 



  

             

   

                

                 

              

         

                

         

          

             

                 

                  

            

              

            

             

            

          

          

        

    

  

  

  

  

  

  

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

simulations. Considerable regions in the North Atlantic also are impacted by external forcing in terms of decadal SST 

predictability and the signal-to-noise paradox. 

To address the second question, we perform CCSM4 HR model experiments with resolved mesoscale ocean 

in comparison with the LR model, and the results are also discussed through the lens of the signal-to-noise paradox. 

The design of model experiments is based on the hypothesis that the presence of ocean mesoscale processes and 

features and the associated vertical connectivity impact decadal variability, predictability, and the signal-to-noise 

paradox. This is for the first time that the signal-to-noise issue has been addressed with eddy-resolving GCMs. Our 

argument here is generally consistent with Strommen and Palmer (2019) and Zhang and Kirtman (2019b) in that we 

attribute the low signal-to-noise ratio to the lack of persistence, which can be seen in decadal predictability estimates 

in Fig. 7. We further argue that the lack of persistence in climate models stems from the lack of vertical connectivity 

in the subsurface ocean between ocean mixed layer and thermocline. The extent to which the differences in vertical 

connectivity between the HR and LR models has been discussed from the subsurface vertical structure in terms of the 

correlation between SSTA and OHC anomalies, the correlation between SSTA and subsurface ocean temperature 

anomalies, as well as the correlation between OHC anomalies and surface heat flux anomalies. We have demonstrated 

that in the HR model with resolved mesoscale ocean, there is consistent upper ocean vertical structure and strong 

vertical connection in the subsurface ocean that is weaker or even absent in the LR model. The most significant 

difference of vertical connectivity between HR and LR occurs in the deep ocean (i.e., deep thermocline). The 

differences of vertical connectivity in the HR and LR models can thus contribute to the differences of the persistence 

of decadal SST variability and the decadal SST predictability. We argue that the HR models with resolved mesoscale 

ocean may potentially (at least partially) eliminate the signal-to-noise issue and thus improve decadal-scale climate 

predictability. 
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